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Abstract. The paper considers the modeling of networks of queues. Nodes in the network are modeled as memoryless queues. 

The focus is on open networks, since external packet arrivals and packet departures are permitted. Memoryless queues are 

characterized by a Poisson packet arrival process. This means that the interarrival times are exponentially distributed. The 

service times are characterized by an exponential distribution as well. Systems of queues could be used to model communication 

networks. Namely, after leaving one node in the network, there is a certain probability that a packet proceeds to another node in 

the network. Note that the external packet arrivals are also generated according to a Poisson process. In addition, there is a 
non-zero probability for the packets to leave the network. The network performance is illustrated by numerical examples.  

Keywords: networks of queues; queues; modeling. 

1. INTRODUCTION 

Computer networks are known as a system of interconnected computers for the intent of sharing digital information. 

Networking supports communication between two or more programs running on distant computers. In other words, 

a computer network is a collection of computers which are in some ways connected and exchange data between 

themselves [1‒7]. There are some types of networks which are worth to mention:  

 

 Local Area Networks (LANs) [8]. 

 Metropolitan Area Networks (MANs) [9]. 

 Wide Area Networks (WANs) [10]. 

 Wireless networks [11]. 

 

All these networks facilitate the transfer of data among computers. Each network has its own protocols and 

possibly incorporates different technologies. The routers or gateways interconnect different networks by packetizing 

the data in the format used by the particular network. The Internet has therefore emerged as a network of networks 

[12‒15]. More recently, the Internet of Things (IoT) has appeared that has the ability to interconnect the world in an 

extraordinary way. The IoT has grown immensely over the years, and found applications in transportation, 

infrastructures, agriculture, healthcare, and manufacturing [16, 17]. Queueing theory has emerged as a viable 

alternative in modeling various facets of IoT networks [18‒22]. 

 

2. POISSON PROCESS 

A random process {𝐴(𝑡)|𝑡 ≥ 0} taking nonnegative integer values is a Poisson process with rate 𝜆 given that [23] 

1. 𝐴(𝑡) is a counting process [24] that gives the number of arrivals that have taken place between 0 and time 𝑡, that 

is, for 𝐴(0) = 0 and for 𝑠 < 𝑡, 𝐴(𝑡) − 𝐴(𝑠) is the number of arrivals during the interval (𝑠, 𝑡]. 

2. The number of arrivals that take place during disjoint time intervals are independent. 

3. The number of arrivals in any interval of length 𝜏 is characterized by the Poisson distribution with parameter 𝜆𝜏, 

that for all 𝑡, 𝜏 > 0 and 𝑛 = 0,1, … is given by 

                                               𝑃[𝐴(𝑡 + 𝜏) − 𝐴(𝑡) = 𝑛] = 𝑒−𝜆𝜏(𝜆𝜏)𝑛

𝑛!
∙                          (1) 
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Given a Poisson process, we consider that the interarrival times are independent and exponentially distributed with 

parameter 𝜆. The exponential probability density function is specified by 𝑝(𝜏) = 𝜆𝑒−𝜆𝜏. It follows that, 𝑃[𝜏 < 𝑠] =
1 − 𝑒−𝜆𝑠 and 𝑃[𝜏 > 𝑠] = 𝑒−𝜆𝑠 for 𝑠 ≥ 0.  

For 𝑡 ≥ 0 and 𝛿 ≥ 0, we have that the probability that there are no arrivals during the small interval 𝛿 is given by 

𝑃[𝐴(𝑡 + 𝛿) − 𝐴(𝑡) = 0] = 1 − 𝜆𝛿 + 𝑜(𝛿), the probability that there is one arrival during the small interval 𝛿 is 

given by 𝑃[𝐴(𝑡 + 𝛿) − 𝐴(𝑡) = 1] = 𝜆𝛿 + 𝑜(𝛿), and the probability that there are two or more arrivals during the 

small interval 𝛿 is given by        𝑃[𝐴(𝑡 + 𝛿) − 𝐴(𝑡) ≥ 2] = 𝑜(𝛿), where 𝑜(𝛿) is a function of 𝛿 such that lim
𝛿→0

𝑜(𝛿)
𝛿

=0.  

If multiple independent Poisson processes 𝐴1, … , 𝐴𝑘 are merged into a single process as a sum 𝐴 = 𝐴1 + ⋯ + 𝐴𝑘, 

this process is also Poisson with a rate given by the sum of the rates of the component Poisson processes [23]. 

3. THE M/M/𝒎 QUEUE 

The M/M/𝑚 queue has 𝑚 servers [23]. A customer at the beginning of the queue is routed to any server that is 

available at that moment. The state transition diagram is shown in Figure 1.  

 

We can write down the steady state probabilities 𝑝𝑘 and take 𝛿 → 0, to have [23]  

                                                                 𝜆𝑝𝑘−1 = 𝑘 𝜇 𝑝𝑘 ,            𝑘 ≤ 𝑚,                                                   (2) 

𝜆𝑝𝑘−1 =  𝑚 𝜇 𝑝𝑘 ,           𝑘 > 𝑚. 
 

From these equations, we can obtain [23] 

 

                                                       𝑝𝑘 = {
𝑝0

(𝑚𝜌)𝑘

𝑘!
,            𝑘 ≤ 𝑚,

           𝑝0
𝑚𝑚𝜌𝑘

𝑚!
,             𝑘 > 𝑚,           

                                           (3) 

 

  

where 𝜌, the utilization factor, is given by  

 

                                                                              𝜌 =
𝜆

𝑚𝜇
< 1.                                                                       (4)  

 

From the equations above we can calculate 𝑝0 with the condition, ∑ 𝑝𝑘 = 1∞
𝑘=0 , we have that 

 

 

 

Figure 1. State transition diagram of the M/M/𝑚 queue. 
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                                                 𝑝0 = [1 + ∑
(𝑚𝜌)𝑘

𝑘!

𝑚−1
𝑘=1  + ∑

(𝑚𝜌)𝑘

𝑘!

∞
𝑘=𝑚

1

𝑚𝑘−𝑚]
−1

                                                (5)  

 

and from there, we get [23] 

 

                                                              𝑝0  =
1

∑
(𝑚𝜌)𝑘

𝑘!
𝑚−1
𝑘=0  +

(𝑚𝜌)𝑚

𝑚!(1−𝜌)

∙                                                                         (6)  

 

4. MARKOVIAN QUEUEING NETWORKS 

The focus is on a 𝑁 node open Markovian network. The network is open in the sense that it permits external arrivals 

and departures. The external arrivals at the 𝑖th node are generated by a Poisson source at an average rate of 𝛾𝑖 

customers per second. The 𝑖th node consists of a single queue with, say, 𝑚𝑖 servers with an exponentially distributed 

service time. After the customer completes service at the 𝑖th node it proceeds to the 𝑗th node with probability 𝑟𝑖𝑗  

where it represents an internal arrival to the 𝑗th node. Note that it is possible for the customer to leave the network 

with a probability 1 − ∑ 𝑟𝑖𝑗
𝑁
𝑗=1 . The model also allows feedback to nodes that have been already visited. The total 

arrival rate at the 𝑖th node which can be comprised of both external and internal arrivals is denoted by 𝜆𝑖 customers 

per second. It is therefore given by [23] 

                                                           𝜆𝑖 = 𝛾𝑖 + ∑ 𝜆𝑗𝑟𝑗𝑖
𝑁
𝑗=1                                                                          (7) 

It follows as a result of Jackson’s theorem that for such a network each node behaves as if the input is Poisson. This 

is so even though the arrival processes at different nodes are not necessarily Poisson. Therefore if 𝑝(𝑘1, 𝑘2, … , 𝑘𝑁) 

denotes the equilibrium probability that there are 𝑘𝑖 customers in the 1st node, 𝑘2 customers in the 2nd node and so 

on, 𝑘𝑁 customers in the 𝑁th node then as a result of Jackson’s theorem the joint probability can be represented as a 

product of the marginal probabilities 𝑝𝑖(𝑘𝑖) for 𝑖 = 1,2, … , 𝑁, that is [23] 

                                    𝑝(𝑘1, 𝑘2, … , 𝑘𝑁) = 𝑝1(𝑘1)𝑝2(𝑘2) ⋯ 𝑝𝑁(𝑘𝑁)                                                         (8) 

where 𝑝𝑖(𝑘𝑖) is the solution for the equilibrium probability of finding 𝑘𝑖 customers in the queue of the 𝑖th node as if 

it is an isolated queue operating by itself with an input arrival rate 𝜆𝑖 for 𝑖 = 1,2, … , 𝑁. In other words, the product 

form of the joint probability reveals the independence as indicated by the amazing result of the Jackson’s theorem. 
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5. MODELING NETWORKS OF QUEUES 

An example of an open Markovian network with 𝑁 = 4 nodes is illustrated in Figure 2.  

 

 

 

 

 

 

 

 

 

      

 

 

 

Figure 2. Example of an open network. 

The branch labels are 𝑟𝑖𝑗 . These transition probabilities comprise the 𝑁 × 𝑁 matrix 𝑹 = [𝑟𝑖𝑗]. In the case of the 

example open network given in Figure 2, the matrix 𝑹 is given by 

 

                                          𝑹 = [

0 2 3⁄    0   1 6⁄

1 4⁄ 0    0   1 2⁄

5 6⁄
0

0
0

0
2 3  ⁄

 
0
0

   
]                                                                         (9) 

 

In order to determine the arrival rate to the 𝑖th node 𝜆𝑖 , we need to solve 𝜆𝑖 = 𝛾𝑖 + ∑ 𝜆𝑗𝑟𝑗𝑖
𝑁
𝑗=1  for 𝑖 = 1,2, … , 𝑁. Let 

𝝀 = [𝜆1, 𝜆2, … , 𝜆𝑁] and 𝜸 = [𝛾1, 𝛾2, … , 𝛾𝑁]. The equation can then be rewritten as 

                                                             𝝀 = 𝜸 + 𝝀𝑹                                                                               (10) 

It follows that in order to find the arrival rates 𝝀, we need to evaluate 

 

                                                             𝝀 = 𝜸(𝑰 − 𝑹)−𝟏                                                                         (11)                                                                    

where 𝑰 denotes the identity matrix given by 

 

                                                   𝑰 = [

1 0 0 0
0 1 0 0
0
0

0
0

1
0

0
1

]                                                                          (12) 

 

Note that det(𝑰 − 𝑹) ≠ 0 for the matrix (𝑰 − 𝑹) to be invertible [25]. 

 

                                                 
6. NUMERICAL EXAMPLES 

The random input vector is binary, that is, 𝛾𝑖 = 0 or 𝛾𝑖 = 1 for 𝑖 = 1, … ,4. 
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The determinant of the matrix 𝑰 − 𝑹 is 

                                                        det(𝑰 − 𝑹) = 0.5556                                                                   (13) 

Note that det(𝑰 − 𝑹) ≠ 0. Therefore the matrix 𝑰 − 𝑹  is invertible and the inverse matrix  (𝑰 − 𝑹)−1 is  

                                    (𝑰 − 𝑹)−1 = [

1.8 1.2 0.6    0.9
0.95 1.63  0.65  0.97
1.5
1

1
0.67

  
1.5
1

  
 0.75
1.5

]                                                      (14) 

Therefore, the vector of arrival rates can be readily evaluated as 𝝀 = 𝜸(𝑰 − 𝑹)−𝟏. Note that the numerical example 

is implemented in MATLAB [26, 27]. 

The arrival rates for each of the nodes of the example open network are presented in Figure 3. It can be readily 

observed that for the considered time range the arrival rates are 𝜆1 ≲ 5.75 packets per second at the 1st node in the 

network, 𝜆2 ≲ 5 packets per second at the 2nd node in the network, 𝜆3 ≲ 4.25 packets per second at the 3rd node in 

the network, and 𝜆4 ≲ 3.5 packets per second at the 4th node in the network. 

 

Figure 3. Arrival rates for each of the nodes in the open network. 

 

7. CONCLUSION 

The paper focused on the modeling of networks of queues with memoryless queues considered at each node in the 

network. The network was open in the sense that it permitted external arrivals and departures. The model was 

developed in MATLAB. It was illustrated through an example of a simple network where the network was modeled 

as a matrix. Arrival rates for all nodes in the network could then be obtained based on matrix calculations. 
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