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Abstract. Analysis of algorithms is an issue that has always stimulate enormous curiosity. There are logical techniques for 

estimating the complexity of an algorithm. Generally, a more convenient solution is to estimate the run time analysis of the 

algorithm. The present piece of investigation documents the comparative analysis of five different sorting algorithms of data 

structures Bubble Sort, Heap Sort, Straight Insertion Sort, Shell Insertion Sort, and Quick Sort. The running time of these 

algorithms is calculated with the C++ language. These sorting algorithms are also compared on the basis of various parameters 

like complexity, method, memory, etc.  
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1. INTRODUCTION 

A Sorting Algorithm is used to rearrange a given array or list elements according to a comparison operator on the 

elements. The comparison operator is used to decide the new order of elements in the respective data structure. 

In other words, sorting algorithms are ways to organize an array of items from smallest to largest. These algorithms 

can be used to organize messy data and make it easier to use. 

Sorting properties: 

A. Adaptive 

A sort is adaptive if it runs faster on a partially sorted array.  

B. Stable 

A sort is stable if it preserves the relative order of equal keys in the database.  

C. In Situ 

An in situ (“in place”) sort moves the items within the array itself and, thus, requires only a small O(1) 

amount of extra storage.  

D. Online 

 An online sort can process its data piece-by-piece in serial fashion without having the entire array available 

from the beginning of the algorithm. 

 

 

2. FIVE SORTING ALGORITHMS 

In this paper, is discussed for five sorting algorithms: 

1. Straight Insertion Sort 

2. Shell Insertion Sort 

3. Heap Sort 

4. Quick Sort 

5. Bubble Sort 



F. Halili et al. / IBU International Journal of Technical and Natural Sciences 2 (2021) 39-52 
 

40 
 

2.1 Straight Insertion Sort 

Straight insertion sort is one of the most basic sorting algorithms that essentially inserts an element into the right 

position of an already sorted list. It is usually added at the end of a new array and moves down until it finds an 

element smaller than itself (the desired position). The process repeats for all the elements in the unsorted array.  

Consider the array {3,1,2,5,4}, we begin at 3, and since there are no other elements in the sorted array, the sorted 

array becomes just {3}. Afterward, we insert 1 which is smaller than 3, so it would move in front of 3 making the 

array {1,3}. This same process is repeated down the line until we get the array {1,2,3,4,5}. 

The advantages of this process are that it is straightforward and easy to implement. Also, it is relatively quick when 

there are small amounts of elements to sort. It can also turn into binary insertion which is when you compare over 

longer distances and narrow it down to the right spot instead of comparing against every single element before the 

right place. However, a straight insertion sort is usually slow whenever the list becomes large. 

Main Characteristics: Insertion sort family 

Straightforward and simple 

Worst case = O(n^2) 

 

Table 1. Straight Insertion Sort Complexity 

Time Complexity 

Best                                                                                                      O(n)  

Worst                                                                                                   O(n2) 

Average                                                                                               O(n2) 

Space Complexity                                                                              O(1) 

Stability                                                                                              Yes  

 
Time Complexities 

 

● Worst Case Complexity: O(n2) 

Suppose, an array is in ascending order, and you want to sort it in descending order. In this case, worst case 

complexity occurs. 

Each element has to be compared with each of the other elements so, for every nth element, (n-1) number of 

comparisons are made. 

Thus, the total number of comparisons = n*(n-1) ~ n2 

To insert the last element, we need at most n-1n−1 comparisons and at most n-1 swaps. To insert the second to last 

element, we need at most n-2 comparisons and at most n-2 swaps, and so on. The number of operations needed to 

perform insertion sort is therefore:  2×(1+2+⋯+n−2+n−1). To calculate the recurrence relation for this algorithm, 

we use the following summation: 

          p 

 ∑  q= p(p+1)/2 

   q=1 

It follows that,  

 

2(n−1)(n−1+1)/2 =n(n−1) 

 

● Best Case Complexity: O(n) 
When the array is already sorted, the outer loops run for n number of times whereas the inner loop does not run at 

all. So, there are only n number of comparisons. Thus, complexity is linear. 

 

● Average Case Complexity: O(n2) 

It occurs when the elements of an array are in jumbled order (neither ascending nor descending). 

 

Space Complexity 

Space complexity is O(1) because an extra variable key is used. 
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Figure 1. Insertion Sort Efficiency 

The graph demonstrates the n2 complexity of the insertion sort. 

The insertion sort is a good middle-of-the-road choice for sorting lists of a few thousand items or less. The algorithm 

is significantly simpler than the shell sort, with only a small trade-off in efficiency. At the same time, the insertion 

sort is over twice as fast as the bubble sort and almost 40% faster than the selection sort. The insertion sort shouldn't 

be used for sorting lists larger than a couple thousand items or repetitive sorting of lists larger than a couple hundred 

items. 

 

void insertionSort() 

{ 

int temp; 

for(long i = 1; i < length; i++) 

{ 

temp = list[i]; 

long j; 

for(j = i-1; j >= 0 && list[j] > temp; j--) 

{ 

list[j+1] = list[j]; 

} 

list[j+1] = temp; 

}} 

Code one 

 

2.2 Shell Insertion Sort 

Shell sort is an insertion sort that first partially sorts its data and then finishes the sort by running an insertion sort 

algorithm on the entire array. It generally starts by choosing small subsets of the array and sorting those arrays. 

Afterward, it repeats the same process with larger subsets until it reaches a point where the subset is the array, and 

the entire thing becomes sorted. The advantage of doing this is that having the array almost entirely sorted helps the 

final insertion sort achieve or be close to its most efficient scenario. 
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Furthermore, increasing the size of the subsets is achieved through a decreasing increment term. The increment term 

essentially chooses every kth element to put into the subset. It starts large, leading to smaller (more spread out) 

groups, and it becomes smaller until it becomes 1 (all of the array). 

The main advantage of this sorting algorithm is that it is more efficient than a regular insertion sort. Also, there are a 

variety of different algorithms that seek to optimize shell sort by changing the way the increment decreases since the 

only restriction is that the last term in the sequence of increments is 1. (The most popular is usually Knuth’s method 

which uses the formula h=((3^k)-1)/2 giving us a sequence of intervals of 1 (k=1),4 (k=2),13 (k=3), and so on. On 

the other hand, shell sort is not as efficient as other sorting algorithms such as quicksort and merge sort.) 

Main Characteristics:  Sorting by insertion 

Can optimize algorithm by changing increments 

Using Knuth’s method, the worst case is O(n^(3/2)) 

 
Table 2. Shell Sort Complexity 

Time Complexity 

Best                                                                                                      O(nlog n)  

Worst                                                                                                   O(n2) 

Average                                                                                               O(nlog n)  

Space Complexity                                                                              O(1) 

Stability                                                                                              No 

 

 
Time Complexities 

 

● Worst Case Complexity: O(n2) 

It is always less than or equal to O(n2) 

In a very worst-case scenario (which doesn't exist), each sort would be quadratic time. 

comparisons ≤ n2, for 1 sort with elements 1-apart (last step) 

+ 3 * (n/3)2, for 3 sorts with elements 3-apart (next-to-last step) 

+ 7 * (n/7)2, for 7 sorts with elements 7-apart 

+ 15 * (n/15)2, for 15 sorts with elements 15-apart 

+ ... 

We can see that the number of comparisons is bounded by: n2 * (1 + 1/3 + 1/7 + 1/15 + 1/31 + ...) < n2 * (1 + 1/2 + 

1/4 + 1/8 + 1/16 + ...) = n2 * 2 

The last step uses the sum of the geometric series. 

 

● Best Case Complexity: O(n*log n) 
When the array is already sorted, the total number of comparisons for each interval or increment is equal to size of 

the array. 

The best case, like insertion sort, is when the array is already sorted. Then the number of comparisons for each of 

the increment-based insertion sorts is the length of the array.  

Therefore we can determine: comparisons = 

n, for 1 sort with elements 1-apart (last step) 

+ 3 * n/3, for 3 sorts with elements 3-apart (next-to-last step) 

+ 7 * n/7, for 7 sorts with elements 7-apart 

+ 15 * n/15, for 15 sorts with elements 15-apart 

+ ... 

Each term is n. The question is how many terms are there? The number of terms is the value k such that 

2k - l  < n 

So k < log(n+1), meaning that the sorting time in the best case is less than n * log(n+1) = O(n*log(n)). 

 

● Average Case Complexity: O(n*log n) 

It is around O(n1.25). 

The complexity depends on the interval chosen. The above complexities differ for different increment sequences 

chosen. Best increment sequence is unknown. 
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Space Complexity 

Space complexity is O(1). 

 
Figure 2. Shell Sort Efficiency 

 

The shell sort is by far the fastest of the N2 class of sorting algorithms. It's more than 5 times faster than the bubble 

sort and a little over twice as fast as the insertion sort, its closest competitor. The shell sort is still significantly 

slower than the merge, heap, and quick sorts, but its relatively simple algorithm makes it a good choice for sorting 

lists of less than 5000 items unless speed is hyper-critical. It's also an excellent choice for repetitive sorting of 

smaller lists. 

 

void insertionSort() 

{ 

    int temp; 

    for(long i = 1; i < length; i++) 

    { 

        temp = list[i]; 

        long j; 

        for(j = i-1; j >= 0 && list[j] > temp; j--) 

        { 

            list[j+1] = list[j]; 

        } 

        list[j+1] = temp; 

    } 

} 

Code two 
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2.3 Heap Sort 

Heapsort is a sorting algorithm based on the structure of a heap. The heap is a specialized data structure found in a 

tree or a vector. In the first stage of the algorithm, a tree is created with the values to be sorted, starting from the left, 

we create the root node, with the first value. Now we create a left child node and insert the next value, at this 

moment we evaluate if the value set to the child node is bigger than the value at the root node, if yes, we change the 

values. We do this to all the trees. The initial idea is that the parent nodes always have bigger values than the child 

nodes. 

At the end of the first step, we create a vector starting with the root value and walking from left to right filling the 

vector. 

Now we start to compare parent and child nodes values looking for the biggest value between them, and when we 

find it, we change places reordering the values. In the first step, we compare the root node with the last leaf in the 

tree. If the root node is bigger, then we change the values and continue to repeat the process until the last leaf is the 

larger value. When there are no more values to rearrange, we add the last leaf to the vector and restart the process. 

We can see this in the image below. 

Main characteristics: From the family of sorting by selection 

Comparisons in the worst-case = O(n log n) 

Not stable 

 
Table 3. Heap Sort Complexity 

Time Complexity 

Best                                                                                                      O(nlog n) 

Worst                                                                                                   O(nlog n) 

Average                                                                                               O(nlog n) 

Space Complexity                                                                              O(1) 

Stability                                                                                              No 

 
Time Complexities 

Heap Sort has O(n*log n) time complexities for all the cases ( best case, average case, and worst case). 

Let us understand the reason why. The height of a complete binary tree containing n elements is log n. 

To fully heapify an element whose subtrees are already max-heaps, we need to keep comparing the element with its 

left and right children and pushing it downwards until it reaches a point where both its children are smaller than it.In 

the worst case scenario, we will need to move an element from the root to the leaf node making a multiple 

of log(n) comparisons and swaps. 

The run-time analysis of maxifying the heap depends on the number of “trickle-downs” per node being swapped. 

For example, if you have n = 6 total elements and are at level i = 0, you are at the level of the leaf nodes. By looking 

at the heap, you can see there are 3 nodes at this level i = 0. The expression used to prove this is n/2^i+1. 

If we are at level i, we have to go a max of i levels down. This means that if we are at level 0, we go down 0 levels, 

which makes sense because this is the bottom-most level where all the leaf nodes are. 

Similarly, at level i = 1, we “trickle down” a maximum of 1 level. At i = 2, we “trickle” a max 2 levels down. And 

so forth for any level i. 

 

Space Complexity 

Space complexity is O(1). 
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Figure 3. Heap Sort Efficiency 

 

As mentioned above, the heap sort is slower than the merge and quick sorts but doesn't use multiple arrays or 

massive recursion like they do. This makes it a good choice for really large sets, but most modern computers have 

enough memory and processing power to handle the faster sorts unless over a million items are being sorted. 

The "million item rule" is just a rule of thumb for common applications - high-end servers and workstations can 

probably safely handle sorting tens of millions of items with the quick or merge sorts. But if you're working on a 

common user-level application, there's always going to be some yahoo who tries to run it on junk machine older 

than the programmer who wrote it, so better safe than sorry. 

 

void heapSort(long length) 

{ 

 

    // Build heap (rearrange array) 

    for (int i = length / 2 - 1; i >= 0; i--) 

        heapify(list, length, i); 

 

    // One by one extract an element from heap 

    for (int i = length - 1; i > 0; i--) { 

        // Move current root to end 

        swap(list[0], list[i]); 

 

        // call max heapify on the reduced heap 

        heapify(list, i, 0); 

    } 

} 

Code three 
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2.4 Quick Sort 

Quicksort is one of the most efficient sorting algorithms, and this makes it one of the most used as well. The first 

thing to do is to select a pivot number, this number will separate the data, on its left are the numbers smaller than it 

and the greater numbers on the right. With this, we got the whole sequence partitioned. After the data is partitioned, 

we can assure that the partitions are oriented, we know that we have bigger values on the right and smaller values on 

the left. The quicksort uses this divide and conquers algorithm with recursion. So, now that we have the data divided 

we use recursion to call the same method and pass the left half of the data, and after the right half to keep separating 

and ordinating the data. At the end of the execution, we will have the data all sorted. 

Main characteristics: From the family of Exchange Sort Algorithms 

Divide and conquer paradigm 

Worst-case complexity O(n²) 

 
Table 4. Quick Sort Complexity 

Time Complexity 

Best                                                                                                      O(nlog n)  

Worst                                                                                                   O(n2) 

Average                                                                                               O(nlog n) 

Space Complexity                                                                              O(log n) 

Stability                                                                                              No 

 
Time Complexities 

 

● Worst Case Complexity [Big-O]: O(n2) 

It occurs when the pivot element picked is either the greatest or the smallest element. 

This condition leads to the case in which the pivot element lies in an extreme end of the sorted array. One sub-array 

is always empty and another sub-array contains n-1 elements. Thus, quicksort is called only on this sub-array. 

However, the quicksort algorithm has better performance for scattered pivots. 

When quicksort always has the most unbalanced partitions possible, then the original call takes cncnc, n time for 

some constant ccc, the recursive call on n-1 elements takes c(n-1) time, the recursive call on n-2 elements takes c(n-

2) time, and so on. 

When we total up the partitioning times for each level, we get 

cn+c(n−1)+c(n−2)+⋯+2c =c(n+(n−1)+(n−2)+⋯+2) =c((n+1)(n/2)−1) . 

 

● Best Case Complexity [Big-omega]: O(n*log n) 
It occurs when the pivot element is always the middle element or near to the middle element. 

The former case occurs if the subarray has an odd number of elements and the pivot is right in the middle after 

partitioning, and each partition has (n-1)/2 elements. The latter case occurs if the subarray has an even number nnn 

of elements and one partition has n/2 elements with the other having n/2-1. In either of these cases, each partition 

has at most n/2 elements, and the tree of subproblem sizes looks a lot like the tree of subproblem sizes for merge 

sort, with the partitioning times looking like the merging times. 

 

● Average Case Complexity: O(n*log n) 

It occurs when the above conditions do not occur. 

 

Space Complexity 

Space complexity is O(log n). 
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Figure 4. Quick Sort Efficiency 

 

The quick sort is by far the fastest of the common sorting algorithms. It's possible to write a 

special-purpose sorting algorithm that can beat the quick sort for some data sets, but for general case sorting there 

isn't anything faster. 

As soon as students figure this out, their immediate impulse is to use the quick sort for everything - after all, faster is 

better, right? It's important to resist this urge - the quick sort isn't always the best choice. As mentioned earlier, it's 

massively recursive (which means that for very large sorts, you can run the system out of stack space pretty easily). 

It's also a complex algorithm - a little too complex to make it practical for a one-time sort of 25 items, for example. 

With that said, in most cases the quick sort is the best choice if speed is important (and it almost 

always is). Use it for repetitive sorting, sorting of medium to large lists, and as a default choice 

when you're not really sure which sorting algorithm to use. Ironically, the quick sort has horrible 

efficiency when operating on lists that are mostly sorted in either forward or reverse order - avoid it in those 

situations. 
 

void quickSort(long left, long right) 

{ 

    if (left < right) 

    { 

        long pivot = partition(left, right); 

        quickSort(left, pivot-1); 

        quickSort(pivot+1, right); 

    } 

} 

Code four 

 

2.5 Bubble Sort 

Bubble sort compares adjacent elements of an array and organizes those elements. Its name comes from the fact that 

large numbers tend to “float” (bubble) to the top. It loops through an array and sees if the number at one position is 

greater than the number in the following position which would result in the number moving up. This cycle repeats 

until the algorithm has gone through the array without having to change the order. This method is advantageous 
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because it is simple and works very well for mostly sorted lists. As a result, programmers can quickly and easily 

implement this sorting algorithm. However, the tradeoff is that this is one of the slower sorting algorithms. 

Main Characteristics: Exchange sorting  

Easy to implement  

Worst Case = O(n^2) 

 
Table 5. Bubble Sort Complexity 

Time Complexity 

Best                                                                                                      O(n)  

Worst                                                                                                   O(n2) 

Average                                                                                               O(n2) 

Space Complexity                                                                              O(1) 

Stability                                                                                              Yes 

 
Time Complexities 

 

● Worst Case Complexity: O(n2) 
This is the case when the array is reversely sort i.e. in descending order but we require ascending order or ascending 

order when descending order is needed. 

The number of swaps of two elements is equal to the number of comparisons in this case as every element is out of 

place. 

$T(N) = C(N) = S(N) = \frac{N*(N-1)}{2}$, from equation 2 and 4 

Therefore, in the worst case: 

Number of Comparisons: O(N^2) time 

Number of swaps: O(N^2) time 

 

● Best Case Complexity: O(n) 
This case occurs when the given array is already sorted. 

For the algorithm to realise this, only one walk through of the array is required during which no swaps occur (lines 

9-13) and the swapped variable (false) indicates that the array is already sorted. 

$T(N) = C(N) = N$ 

$S(N) = 0$ 

Therefore, in the best case: 

Number of Comparisons: N = O(N) time 

Number of swaps: 0 = O(1) time 

 

● Average Case Complexity: O(n2) 
The number of comparisons is constant in Bubble Sort so in average case, there is O(N^2) comparisons. This is 

because irrespective of the arrangement of elements, the number of comparisons C(N) is same.  

For the number of swaps, consider the following points: 

If an element is in index I1 but it should be in index I2, then it will take a minimum of I2-I1 swaps to bring the 

element to the correct position. 

An element E will be at a distance of I3 from its position in sorted array. Maximum value of I3 will be N-1 for the 

edge elements and it will be N/2 for the elements at the middle. 

The sum of maximum difference in position across all elements will be: 

(N-1) + (N-3) + (N-5) ... + 0 + ... + (N-3) + (N-1) 

= N x N - 2 x (1 + 3 + 5 + ... + N/2) 

= N^2 - 2 x N^2 / 4 

= N^2 - N^2 / 2 

= N^2 / 2 

 

Space Complexity 

● Space complexity is O(1) because an extra variable is used for swapping. 
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● In the optimized bubble sort algorithm, two extra variables are used. Hence, the space complexity will 

be O(2). 

 

 
Figure 5. Bubble Sort Efficiency 

 

The graph clearly shows the n2 nature of the bubble sort. 

A fair number of algorithm purists (which means they've probably never written software for a living) claim that the 

bubble sort should never be used for any reason. Realistically, there isn't a noticeable performance difference 

between the various sorts for 100 items or less, and the simplicity of the bubble sort makes it attractive. The bubble 

sort shouldn't be used for repetitive sorts or sorts of more than a couple hundred items. 

void bubbleSort() 

{ 

    int temp; 

    for(long i = 0; i < length; i++) 

    { 

        for(long j = 0; j < length-i-1; j++) 

        { 

            if (list[j] > list[j+1]) 

            {  

                temp        = list[j]; 

                list[j]     = list[j+1]; 

                list[j+1]   = temp; 

            } 

        } 

    } 

} 

Code five 
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3. RESULTS SORT COMPARISON 

After the development of the algorithms, it is good for us to test how fast they can be. In this part we developed a 

simple program using the code above to generate a basic benchmark, just to see how much time they can use to sort 

a list of integers. An important observation about the code is that Shell sort and Heap Sort algorithms performed 

well despite the length of the lists, on the other side we found that Insertion sort and Bubble sort algorithms were far 

the worse, increasing largely the computing time. 

 
Figure 6. Results of comparison 

In this section, we are going to conduct three sets of tests. The first will have 100 random numbers, the second will 

have 1000 and the third will have 10,000. 

 

Table 6. Results of comparison 

Sorting Algorithm 

 

Test 1 (100) Test 2 (1000) Test 3 (10000) 

Bubble Sort Min: 0.01008 seconds 
Max: 0.0206 seconds 

Min: 1.0242 seconds 
Max: 1.0558 seconds 

Min: 100.922 seconds 
Max: 102.475 seconds 

Insertion Sort Min: 0.00306 seconds 
Max: 0.00650 seconds 

Min: 0.0369 seconds 
Max: 0.0562 seconds 

Min: 100.422 seconds 
Max: 102.344 seconds 

Selection Sort Min: 0.00556 seconds 
Max: 0.00946 seconds 

Min: 0.4740 seconds 
Max: 0.4842 seconds 

Min: 40.831 seconds 
Max: 41.218 seconds 

Quick Sort Min: 0.00482 seconds 
Max: 0.01141 seconds 

Min: 0.0370 seconds 
Max: 0.0383 seconds 

Min: 0.401 seconds 
Max: 0.420 seconds 

Merge Sort Min: 0.00444 seconds 
Max: 0.00460 seconds 

Min: 0.0561 seconds 
Max: 0.0578 seconds 

Min: 0.707 seconds 
Max: 0.726 seconds 

Heap Sort Min: 0.00489 seconds 
Max: 0.00510 seconds 

Min: 0.0704 seconds 
Max: 0.0747 seconds 

Min: 0.928 seconds 
Max: 0.949 seconds 

 
The O(n2) Algorithms (Bubble and Insertion Sort) reacted very poorly as the number of tests went up to 10,000. At 

10,000 numbers the other Algorithms were on average, over 100x times faster. 
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On the test cases with just 100 numbers, the O(n2) Algorithms were faster than the O(n.log(n)) Algorithms. With 

every 10x increase in the amount of numbers, the O(n2) Algorithms completion time increased by 100x. 

Heapsort is fastest Algorithm with a space complexity of O(1). 

 

 
Figure 7. Results of comparison 

 

4. CONCLUSION 

In this study, we have studied various sorting algorithms and their comparison. There are advantages and 

disadvantages to all algorithms. To find the running time of all sorting algorithms, we used   C++. 
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